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Abstract

The purpose of this work is to obtain an approximation for the top Lyapunov exponent, the exponential
growth rate, of the response of a single-well Kramers oscillator driven by either a multiplicative or an
additive white-noise process. To this end, we consider the equations of motion as dissipative and noisy
perturbations of a two-dimensional Hamiltonian system. A perturbation approach is used to obtain explicit
expressions for the exponent in the presence of small intensity noise and small dissipation. We show
analytically that the top Lyapunov exponent is positive, and for small values of noise intensity

ffiffi
e

p
and

dissipation e the exponent grows in proportion with e1=3:
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

No theorem has had so direct and powerful an influence upon the study of stochastic stability of
noisy dynamical systems as the multiplicative ergodic theorem (MET) of Oseledec [1], which
established the existence of (typically) finitely many deterministic exponential growth rates called
Lyapunov exponents. The stability of linear stochastic systems based on MET has been well
established [2,3] and the top Lyapunov exponent can be evaluated explicitly with relative ease
when the noisy perturbations and dissipation are weak [4,5].

The primary concern in the analysis of non-linear dynamical systems, is the determination and
prediction of steady states or stationary motions (e.g., invariant measures of the local random
dynamical systems), and their corresponding stability. The challenge is to explicitly evaluate the
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top Lyapunov exponents of these stationary measures asymptotically when the noise is weak,
which is the problem we shall address in this paper.

For example, many engineering systems under additive white-noise excitations can be expressed
as

.xi
t þ bi ’x

i
t þ

@U

@xi
ðxtÞ ¼ xiðtÞ; i ¼ 1; 2;y; n; ð1Þ

where xiðtÞ’s are stationary stochastic processes, bi’s represent the damping in each mode, and U is
the potential. Under the assumptions that xiðtÞ’s are uncorrelated Gaussian processes, and the
ratio of the spectral density of each excitation, xiðtÞ; to the corresponding damping, bi; is the same,
i.e.,

g ¼
bi

kii

for all i; where E½xiðt þ tÞxiðtÞ� ¼ 2kiidðtÞ;

the stationary probability density of Eq. (1) can be easily written as

pðx; ’xÞ ¼ C exp �g
1

2

Xn

i¼1

ð ’xiÞ2 þ UðxÞ

" #( )
:

Such stationary probability densities exist for an even larger class of multi-dimensional non-linear
systems and there is a vast engineering literature that deals with the determination of such
stationary densities (see, e.g., Ref. [6]). However, there are no concrete results on the sign of the
top Lyapunov exponents corresponding to these stationary measures. Hence, their stability is not
known. The study of asymptotic stability of non-linear systems with noise, which we shall address
in this paper, opens the door to a host of physically interesting problems in random vibrations,
from simple oscillators to noisy autoparametric systems.

Schimansky-Geier and Herzel [7] were the first to consider numerically the Lyapunov exponents
of a two-dimensional non-linear system under additive noise. Their work was devoted to the effect
of noise on the Kramers oscillator

.xt þ e ’xt þ U 0ðxtÞ ¼
ffiffiffiffiffi
2e

p
xðtÞ; ð2Þ

where UðxÞ ¼ �a
2

x2 þ b
4

x4; a; b > 0; with double-well potential, which was studied by Kramers in
his celebrated work [8]. It was shown [7] that the top Lyapunov exponent is positive, i.e.,

lðeÞ > 0 for e not too large:

The top Lyapunov exponent is determined by the simultaneous behavior of two neighboring
orbits, or the two-point motion of the Kramers oscillator. A positive Lyapunov exponent implies
that, while for each single initial condition the corresponding solution trajectory builds-up a non-
trivial stationary measure, the distance between any two initial conditions will grow at an
exponential rate. Hence, an additive noise in Eq. (2) induces an unstable stationary measure. Our
task in this paper is to show analytically this remarkable observation for Eq. (2) as well as for
similar systems with multiplicative noise. A brief summary of these results was published in Ref.
[9].

The Kramers oscillator with double-well potential, considered by Schimansky-Geier and Herzel
[7], has multiple fixed points, one of which is connected to itself by a homoclinic orbit. The
procedure presented here relies upon an implicit assumption that the instantaneous frequency of
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the unperturbed motion ðe ¼ 0Þ must be non-zero or the periods of oscillations or rotations are
finite. Hence, a subtle treatment is necessary in a neighborhood of the homoclinic orbit where the
unperturbed orbits have arbitrarily long periods. In order to remedy this problem, two different
models, one which is valid away from the homoclinic orbit, the other valid in a boundary layer
about the homoclinic orbit should be introduced and it is beyond the scope of this paper. Thus, we
do not consider it fruitful to attempt to make a general theory for all types of two-dimensional
non-linear Hamiltonians. Rather, we restrict our development to the case for Hamiltonians with an
isolated single elliptic fixed point, i.e., a weakly perturbed oscillator with a single-well potential

UðxÞ ¼
a

2
x2 þ

b

4
x4; a; b > 0; ð3Þ

excited by a white-noise process, xðtÞ: Here we present a general, effective, systematic approach to
determine the asymptotic sample stability of weakly perturbed (dissipatively and stochastically)
two-dimensional non-linear Hamiltonian systems. Random perturbations of Hamiltonian systems
are of great interest, particularly, in the study of noisy non-linear mechanical systems. Randomly
perturbed Hamiltonian system on R2 with multiple fixed points are considered by Freidlin and
Wentzell [10] in the context of stochastic averaging and by Freidlin and Wentzell [11] in the
context of large deviations techniques. The analysis developed in this paper could be extended
with some effort to provide analogous theorems pertaining to Hamiltonians with multiple fixed
points. The versatility of the method presented here, will cause this method to be adopted to such
situations.

In Section 2, we shall place the random vibration problem (1) within the general framework of
random dynamical systems. In Section 3, we state the mathematical structure of the problem and
briefly recall some results obtained by Arnold and Imkeller [12] which are relevant to this paper. In
Section 4, we introduce the concept of action-angle variables [13], apply the classical results of
symplectic transformation and derive the evolution of the action-angle variables. In Section 5, due
to the nilpotent structure of the linear variational equations, Pinsky and Wihstutz [14] re-scaling is
used in the linear variational equations to derive the Furstenberg–Khasminskii formula. In Sections
6 and 7 we appeal to the results of Sri Namachchivaya and Van Roessel [5] and Imkeller and
Lederer [15] to evaluate the first term in the asymptotic expansion of the top Lyapunov exponent.

2. Random dynamical systems

Here we restrict ourselves to the smooth (i.e., CN) case, two-sided continuous time T ¼ R; and
state space Rd : A smooth random dynamical system consists of the following two ‘‘ingredients’’ (see
Ref. [3]):

1. Model of the noise: A metric dynamical system ðO;F;P; ðytÞtARÞ (for short: y), i.e., a probability
space ðO;F;PÞ with a measurable flow of measure preserving transformations yt : O-O; i.e.,
y0 ¼ id; ytþs ¼ yt3ys for all t; sAR; ytP ¼ P; and ðt;oÞ/yto measurable.

2. Model of the system perturbed by noise: A cocycle j over y of smooth mappings of Rd ; i.e., a
measurable mapping

j : R	 O	 Rd-Rd ; ðt;o;xÞ/jðt;oÞx;
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for which ðt; xÞ/jðt;oÞx is continuous in ðt; xÞ and smooth in x; and j satisfies the cocycle

property

jð0;oÞ ¼ idRd ; jðt þ s;oÞ ¼ jðt; ysoÞ3jðs;oÞ 8s; tAR and oAO:

The cocycle property implies that jðt;oÞ�1 ¼ jð�t; ytoÞ; i.e., the mapping jðt;oÞ : Rd-Rd is a
(smooth) diffeomorphism.

The flow Yt on O	 Rd given by Ytðo;xÞ :¼ ðyto;jðt;oÞxÞ is called the skew product flow

corresponding to j:
Dynamical systems driven by white noise are rigorously dealt with in stochastic analysis and are

solutions of (Stratonovich) stochastic differential equations

dx ¼ f ðxÞ dt þ gðxÞ3 dWt; ð4Þ

where f ; g are smooth vector fields in Rd ; which is short for

jðt; �Þx ¼ x þ
Z t

0

f ðjðs; �ÞxÞ ds þ
Z t

0

gðjðs; �ÞxÞ3 dWs:

Let us now consider Eq. (4), or equivalently Eq. (1), in the context of random dynamical systems.
White noise can be canonically modelled as a metric dynamical system as follows: Let O ¼
foACðR;RdÞ : oð0Þ ¼ 0g; F the Borel sigma algebra of O; and P the Wiener measure, i.e., the
measure generated by the Wiener process (Brownian motion) ðWtÞtAR in Rm: This process has
stationary independent increments with Wtþh � WtBNð0; jhjIÞ; continuous trajectories, and
satisfies W0 ¼ 0: The shift ytoð�Þ :¼ oðt þ �Þ � oðtÞ leaves P invariant since the increments are
stationary. Then y is an ergodic metric dynamical system on ðO;F;PÞ ‘‘driving’’ the stochastic
differential equation (4) and Wt ¼ oðtÞ:

Theorem 1 (Arnold and Scheutzow [16]). Let f ; gACN

b : Then the stochastic differential equation
(4) has a unique solution x/jðt;oÞx which is a smooth random dynamical system. The Jacobian

Djðt;o; xÞ is a matrix cocycle over Y and uniquely solves the variational equation

dv ¼ Df ðjðt; �ÞxÞv dt þ Dgðjðt; �ÞxÞv3 dWt: ð5Þ

2.1. Invariant measures

For all further steps we need the notion of an invariant measure for a random dynamical
system. Let j be a random dynamical system. A random probability measure o/mo on ðRd ;BdÞ;
where Bd denotes the space of Borel sets in Rd ; is called invariant under j; if

jðt;oÞmo ¼ myto P� a:s: for all tAR:

For random dynamical systems whose one-point motions Rþ{t/jðt;oÞx are Markov processes
with transition probability Pðt;x;BÞ ¼ Pfo : jðt;oÞxABg and generator G (for solutions of
stochastic differential equation (4)), a measure r on Rd is called stationary if it satisfies for all tARþ;

rð�Þ ¼
Z
Rd

Pðt;x; �ÞrðdxÞ;
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equivalently, if it solves the Fokker–Planck equation

Gnr ¼ 0; with G ¼ f þ 1
2

g2: ð6Þ

Here, we have written G in the H .ormander form. There is a one-to-one correspondence between
stationary r’s and those invariant mo’s for j which are measurable w.r.t. the past F0

�N
of the

noise, via the ‘‘pullback’’

r/mo ¼ lim
t-N

jð�t;oÞ�1r; mo/Em� ¼ r ð7Þ

(see Ref. [3, Section 1.7]). The procedure of passing from a deterministic stationary measure r to a
random invariant measure mo described by Eq. (7) is called disintegration of r: There are,
however, in general more invariant measures mo than those obtained from stationary measures.

2.2. Lyapunov exponents

The fundamental theorem of Oseledec [1] provides us with the stochastic analogues of a
deterministic eigenvalue and eigenspace of a matrix. Let j be a smooth random dynamical system,
and let m be an ergodic invariant measure. It is clear from Theorem 1 that Dj is a linear cocycle
over Y and uniquely solves the linear variational equation (5). The exponential growth rate

lðo;x; vÞ :¼ lim
t-N

1

t
log jjDjðt;o; xÞvjj:

describes the Lyapunov exponent of the solution vtðx; vÞ; for the initial condition v ðva0Þ in Eq. (5).
According to MET [1], l takes on one of r fixed or non-random values l1o?olr; where li is
realized depending on the initial condition v: The multiplicities of the Lyapunov exponents sum to
the dimension of the system, d: The maximum of these, l1; determines the almost-sure stability of
the random dynamical system jðt;oÞ generated by Eq. (4) under the stationary measure r [2,3].

Rewriting the variational equation (5) in polar co-ordinates,

s ¼
v

jjvjj
ASd�1; r ¼ jjvjjAð0;NÞ

yields

drt ¼ q0ðxt; stÞrt dt þ q1ðxt; stÞrt3 dWt; dst ¼ h0ðxt; stÞ dt þ h1ðxt; stÞ3 dWt; ð8Þ

where

h0ðx; sÞ ¼
def

Df ðxÞs � q0ðx; sÞs; q0ðx; sÞ ¼
def /Df ðxÞs; sS;

h1ðx; sÞ ¼
def

DgðxÞs � q1ðx; sÞs; q1ðx; sÞ ¼
def /DgðxÞs; sS;

and /x; yS is the standard scalar product in Rd : In Eq. (8), the equation for st is decoupled from
the one for rt; so that the pair ðxt; stÞ forms a Markov process with state space Rd 	 S

d�1; whose
generator for the additive noise case simplifies to L¼def G þ h0ðx; sÞ@=@s: Integrating the equation
for the radial process rt in Eq. (8) and using the classical ergodic theorem yields the Furstenberg–
Khasminskii formula Ref. [3, Chapter 6] for the top Lyapunov exponent

l ¼
Z
Rd	Sd�1

Qðx; sÞnðdx;dsÞ; ð9Þ
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where Q is some explicitly known function, which for the additive noise case simplifies to Qðx; sÞ ¼
q0ðx; sÞ and n is the (to be determined) joint stationary measure for the Markov process ðxt; stÞ on
Rd 	 S

d�1 with marginal r on Rd : The sign of l in Eq. (9) is of particular interest as it determines
the stability of the variational equation (5) and in turn the stability of the original non-linear
random dynamical system generated by Eq. (4). Formula (9) forms the basis of all asymptotic
studies of Lyapunov exponents and particularly the presentation given in this paper.

2.3. Scalar noisy non-linear systems

Before we proceed further, we should mention in this context some well-known results
pertaining to one-dimensional non-linear stochastic systems. It has been shown that the two-point
motion of a one-dimensional non-linear stochastic system has a unique property. More precisely,
if a noisy one-dimensional equation,

’xt ¼ f ðxtÞ þ gðxtÞxðtÞ; x0 ¼ xAR; ð10Þ

has a stationary invariant measure with density

pðxÞ ¼
N

gðxÞ
exp

Z x 2f ðZÞ
g2ðZÞ

dZ
	 


; ð11Þ

provided pðxÞ is normalizable, then as in Ref. [3], the Lyapunov exponent is

l ¼ �2

Z
N

0

f ðxÞ
gðxÞ

� �2
pðxÞ dx: ð12Þ

The Lyapunov exponent is always negative provided f ðxÞa0: Similar results are also presented by
Leng et al. [17].

The challenge has been to extend the existing techniques in order to explicitly evaluate the top
Lyapunov exponent of higher ðdX2Þ dimensional non-linear systems with noise, and in particular
additive white noise. It is this need and challenge that we shall address in this paper.

3. Statement of the problem

We consider an idealized particle moving in a symmetric single-well potential described by a
function U defined on R: The Hamiltonian of the system will be given by

Hðx; yÞ ¼ UðxÞ þ
y2

2
; x; yAR:

and it is assumed that the Hamiltonian has an isolated elliptic fixed point. The purpose of this
paper is to examine the asymptotic sample stability of this non-linear system under random and
dissipative perturbations. We restrict to this class of potentials from the beginning to make the
calculations of the top Lyapunov exponent become less cumbersome. The particular set of global
variables discussed in the subsequent sections of this paper will shed light on this restriction.
Formally, we assume

UX0; Uð0Þ ¼ 0; UðxÞ ¼ Uð�xÞ; xAR;
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and x/UðxÞ strictly increasing on Rþ: The motion of the corresponding Hamiltonian system is
periodic, returning to the same point x; yAR in the phase space after a period Tðx; yÞ: For each
x; yAR; define the return time as

Tðx; yÞ ¼def infft > 0 : xtðzÞ ¼ zg; ð13Þ

where xtðzÞ is the Hamiltonian flow for all ðx; yÞ ¼ zAR2: It is clear that T depends solely on
Hðx; yÞ and that it is non-negative on R2

\f0g: Thus we start out with a Hamiltonian energy
function with a very simple structure.

Assumption 3.1 (Hamiltonian). We assume that H : R2-R is CN and non-negative. We assume
also that Hðx; yÞ ¼ 0 if and only if x ¼ 0; y ¼ 0: Secondly, Hðx; yÞ ¼ Hð�x;�yÞ for all x; yAR:
Thirdly, we assume that

A ¼def D2Hð0Þ

is positive definite. Finally, we assume that for each h > 0; the set H�1ðhÞ is connected and of finite
one-dimensional Hausdorff measure.

Finally, we assume that the particle is weakly damped and weakly perturbed by a white-noise
process. The primary concern is the determination of the stability of the stationary invariant
measures, which are the stochastic analogue of steady state solutions in non-linear deterministic
systems. The perturbations are scaled by appropriate powers of e; ðe51Þ; in order to obtain the
effect of the damping and the noise at the same order. To this end, a random perturbation of a
two-dimensional Hamiltonian system, with an isolated elliptic fixed point, is precisely given by

dxt ¼ yt dt; dyt ¼ ð�eyt � U 0ðxtÞÞ dt þ
ffiffiffiffiffi
2e

p
sðxt; ytÞ3 dWt: ð14Þ

Here, s : R2-R is supposed to be a smooth function of sublinear growth. Eq. (14) represents the
random vibration of single-degree-of-freedom mechanical systems under either parametric or
additive white-noise excitations. Hence, the typical examples that we consider are given by the
additive noise case, i.e., sðx; yÞ ¼ s ¼ const; which has been studied extensively in the literature
(see, e.g., [18]), or by the multiplicative noise coupled to the displacement, i.e., sðx; yÞ ¼ x; or the
velocity, i.e., sðx; yÞ ¼ y: Our aim is to obtain an asymptotic expansion of the top Lyapunov
exponent of the random dynamical system described in Eq. (14) by making use of the prescribed
scaling.

Now, we shall place our noisy Hamiltonian system (14) within the general framework of
random dynamical systems presented in the previous Section 2 and briefly recall some results
obtained by Arnold and Imkeller [12] which are relevant to this paper. First, a straightforward
application of Arnold and Scheutzow’s [16] results on generation of random dynamical systems
for continuous time yields the following result.

Theorem 2. The stochastic differential equation (14) uniquely generates a smooth random dynamical
system j in R2:
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Although the random dynamical system j depends on E; the invariant measure is independent
of E; that is,

Theorem 3. The stochastic differential equation (14) with s ¼ 1 has a unique stationary measure
given by

pðx; yÞ ¼ C expf�1
2

y2 � UðxÞg; ð15Þ

where the properties of the potential function U satisfy Eq. (3). Furthermore, the disintegration of p
is the unique Markov measure.

We now turn to the asymptotic expansion of the top Lyapunov exponent of the random
dynamical system j corresponding to the stationary measure with density p given by Eq. (15).

Theorem 4 (Arnold and Imkeller [12]). Let j be the random dynamical system given in Theorem 2
for the Kramers oscillator and rðdx; dyÞ ¼ pðx; yÞ dx dy be the unique stationary measure (15).
Parametrizing the unit circle S by s ¼ ðcos a; sin aÞ and identifying points a ¼ 0 and 2p of the
interval ½0; 2p�; we have the angle process of the variational equation

dst ¼ heðxt; yt; atÞ dt ¼ �
3

2
x2

t ð1þ cos 2atÞ þ cos 2at �
e
2
sin 2at

 �
dt;

and the Markov process ðxt; yt; atÞ on R2 	 ½0; 2p� with the generator

Le ¼ Ge þ heðx; y; aÞ
@

@a
¼ y

@

@x
� ðey þ U 0ðxÞÞ

@

@y
þ heðx; y; aÞ

@

@a
;

which has exactly one stationary measure with marginal density p on R2: This measure has support

R2 	 ½0; 2p� and CN density qeðx; y; aÞ: The Furstenberg–Khasminskii formula for the top Lyapunov
exponent is

l ¼
Z
R2

Z 2p

0

1

2
ðð2� 3x2Þ sin 2aþ eðcos 2a� 1ÞÞqeðx; y; aÞ da dx dy: ð16Þ

It turns out that the cartesian co-ordinates are not appropriate for the small noise asymptotic
expansion of the top Lyapunov exponent (16). In the absence of dissipation and random
perturbations ðe ¼ 0Þ; system (14) is integrable (Hamiltonian). Unperturbed Hamiltonian
dynamics provides amazingly successful descriptions of the non-linear dynamics and its
mathematical theory [13] has evolved alongside the physical understanding, to a point of high
sophistication. Hence, we will not use formula (16) directly but rather change first to action-angle
co-ordinates. The underpinning of the method presented here is a separation of scales. The slowly
varying co-ordinate is the value of the Hamiltonian and the quickly varying co-ordinate is the
position (or angle) in the appropriate level set of the Hamiltonian.
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4. Action-angle formulation

The random motions consist of fast rotations along the unperturbed trajectories of the
deterministic system and slow motion across these trajectories. The nature of our system thus
suggests a set of co-ordinates which splits the two components of motion: action-angle co-

ordinates. They are commonly used in the classical perturbation theory of mechanical systems (see
Ref. [13]). The action part is defined by the area enclosed by the level curves of H: Hence, it
captures the slow component of the motion. Whereas the angle part describes uniform motion
along the level curves, and is therefore related with the fast component.

To this end, we need to transform Hðx; yÞ by means of a canonical transformation into new
variables (I ;f action-angle) such that the new Hamiltonian is a constant, hðIÞ and the angle co-
ordinate f increases by 2p after each complete period Tðx; yÞ ¼ TðIÞ of the motion. To introduce
these variables, following Arnold [13], we work with the generating function SðI ; xÞ; determined
by the requirements

y ¼
@S

@x
ðI ; xÞ; f ¼

@S

@I
ðI ; xÞ; H x;

@S

@x
ðI ;xÞ

 �
¼ hðIÞ; ð17Þ

I ¼ IðhÞ is a function of the possible values h of H: The Hamilton–Jacobi equation in Eq. (17) is
solved for the generating function SðI ; xÞ by letting

SðI ; xÞ ¼
Z x

�x0ðIÞ
yðI ; xÞ dx; �x0ðIÞpxpx0ðIÞ;

where

yðI ;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðIÞ � UðxÞÞ

p
:

It is immediately obvious that SðI ; x0ðIÞÞ ¼ pI : Hence, following Arnold [13], we introduce the
transformation

f ¼
@

@I

Z x

�x0ðIÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðIÞ � UðxÞÞ

p
dx ¼ oðIÞ

Z x

�x0ðIÞ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðIÞ � UðxÞÞ

p dx ð18Þ

and

yðf; IÞ ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðIÞ � Uðxðf; IÞÞÞ

p
: ð19Þ

The main point behind the method that is developed here is to use the geometric structure of the
unperturbed integrable Hamiltonian problem in order to develop an appropriate set of ‘‘co-
ordinates’’ for studying the perturbed problem. Now that we have developed such symplectic co-
ordinates, let us use Eqs. (18) and (19) to give some information on the Jacobian of the
transformation ðx; yÞ/ðf; IÞ which is essential in deriving the perturbed equations in the new
variables ðf; IÞ:
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Lemma 4.1. For I > 0 we have

@x

@f
¼

y

o
;

@y

@f
¼ �

U 0ðxÞ
o

: ð20Þ

Moreover,

o ¼ U 0ðxÞ
@x

@I
þ y

@y

@I
: ð21Þ

In particular,

@x

@f
@y

@I
�

@x

@I

@y

@f
¼ 1;

i.e., the transformation belongs to a symplectic form.

Proof. Straightforward. &

Lemma 4.2. For I > 0; fA�0;p½ define

bðf; IÞ ¼
Z f

p=2

1

y2ðx; IÞ
�

o0ðIÞ
o2ðIÞ

� �
dx;

for fA½0;p=2½

a0ðf; IÞ ¼
Z f

0

U 00ðxðx; IÞÞ

U 0ðxðx; IÞÞ2
�

o0ðIÞ
o2ðIÞ

� �
dx;

and for fA�p=2;p�

apðf; IÞ ¼
Z f

p

U 00ðxðx; IÞÞ

U 0ðxðx; IÞÞ2
�

o0ðIÞ
o2ðIÞ

� �
dx:

Then we may write for I > 0 and fA� � p; p½;

@ðx; yÞ
@ðf; IÞ

¼

@x

@f
@x

@I

@y

@f
@y

@I

2
664

3
775 ¼

y

o
yb

�
U 0ðxÞ
o

o
y
� U 0ðxÞb;

2
664

3
775; ð22Þ

for fA½0;p=2½;

@ðx; yÞ
@ðf; IÞ

¼

y

o
o

U 0ðxÞ
þ ya0

�
U 0ðxÞ
o

�U 0ðxÞa0;

2
664

3
775; ð23Þ

and for fA�p=2;p�;

@ðx; yÞ
@ðf; IÞ

¼

y

o
o

U 0ðxÞ
þ yap

�
U 0ðxÞ
o

�U 0ðxÞap

2
664

3
775: ð24Þ
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Moreover, for I > 0; fA½�p; p� we have

@x

@f
ð�f; IÞ ¼ �

@x

@f
ðf; IÞ;

@y

@f
ð�f; IÞ ¼

@y

@f
ðf; IÞ;

@x

@I
ð�f; IÞ ¼

@x

@I
ðf; IÞ;

@y

@I
ð�f; IÞ ¼ �

@y

@I
ðf; IÞ: ð25Þ

Proof. Let us first treat the case �x0ðIÞpxo0; yX0 which corresponds to I > 0;fA½0; p=2½:
Integrating Eq. (18) by parts and then differentiating with respect to I ; we obtain

�f
o0

o2
¼

1

y
�

o
U 0ðxÞ

þ
@x

@I

� �
� o

Z x

�x0

U 00ðxÞ

U 0ðxÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðhðIÞ � UðxÞÞ
p dx:

Solving this equation for @x=@I and noting that by Lemma 4.1 we have dx ¼ ð@x=@fÞ df ¼
ðy=oÞ df yields the requested formula for @x=@I :

In case �x0ðIÞoxox0ðIÞ; yX0 corresponding to I > 0; fA�0; p½ symmetry allows us to write
the alternative of Eq. (18),

f ¼
p
2
þ o

Z xðf;IÞ

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðIÞ � UðxÞÞ

p dx:

Now differentiate with respect to I to get

p
2
� f

� � o0

o2
¼

1

y

@x

@I
� o

Z x

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhðIÞ � UðxÞÞ

p 3
dx:

This equation is again solved for @x=@I ; and the integration in x is replaced by an integration in f:
This gives Eq. (22).

The case 0oxox0ðIÞ; yX0 is treated as the first case. Finally, Eq. (25) is obvious from the
definitions. &

The symplectic property of our co-ordinate change immediately allows us to give formulae for
the inverse of the Jacobian. This is an additional advantage of using canonical transformation.

Lemma 4.3. We have for I > 0 and fA� � p; p½;

@ðf; IÞ
@ðx; yÞ

¼

@f
@x

@f
@y

@I

@x

@I

@y

2
664

3
775 ¼

o
y
� U 0ðxÞ b �yb

U 0ðxÞ
o

y

o

2
664

3
775; ð26Þ

for fA½0;p=2½;

@ðf; IÞ
@ðx; yÞ

¼
�U 0ðxÞa0 �

o
U 0ðxÞ

� ya0

U 0ðxÞ
o

y

o

2
664

3
775; ð27Þ
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and for fA�p=2;p�;

@ðf; IÞ
@ðx; yÞ

¼
�U 0ðxÞap �

o
U 0ðxÞ

� yap

U 0ðxÞ
o

y

o

2
664

3
775; ð28Þ

Moreover, for ðx; yÞað0; 0Þ we have

@f
@x

ðx;�yÞ ¼ �
@f
@x

ðx; yÞ;
@I

@y
ðx;�yÞ ¼

@I

@x
ðx; yÞ;

@f
@y

ðx;�yÞ ¼
@f
@y

ðx; yÞ;
@I

@y
ðx;�yÞ ¼ �

@I

@y
ðx; yÞ: ð29Þ

Proof. This follows directly from Lemma 4.2 and the fact that the Jacobian has determinant 1 due
to the symplectic character of the transformation. &

We are now in a position to describe our basic equations (14) in action-angle variables.
Differentiating the action-angle variables and making use of Lemmas 4.2 and 4.3 yields

dIt ¼
U 0ðxtÞ
oðItÞ

yt dt þ
yt

oðItÞ
½�e yt � U 0ðxtÞ� dt þ

ffiffiffiffiffi
2e

p yt

oðItÞ
sðxt; ytÞ3 dWt

¼def efI ðft; ItÞ dt þ
ffiffiffiffiffi
2e

p
gI ðft; ItÞ3 dWt; ð30Þ

dft ¼
@yt

@I
yt dt �

@xt

@I
½�eyt � U 0ðxtÞ� dt �

ffiffiffiffiffi
2e

p @xt

@I
sðxt; ytÞ3 dWt

¼def oðItÞ dt þ effðft; ItÞ dt þ
ffiffiffiffiffi
2e

p
gfðft; ItÞ3 dWt; ð31Þ

where the vector fields appearing in Eqs. (30) and (31) are renamed as

fI ðf; IÞ ¼ �
y2ðf; IÞ
oðIÞ

; ffðf; IÞ ¼ y
@x

@I
ðf; IÞ;

gI ðf; IÞ ¼
ðysðx; yÞÞðf; IÞ

oðIÞ
; gfðf; IÞ ¼ �

@x

@I
sðx; yÞ

 �
ðf; IÞ;

IX0; fA½�p;p�; to simplify notation in the decomposition of the infinitesimal generator in the
following section. For the linearization of our system, we need the Jacobian of the vector fields.
For convenience, we change the order of f and I and the Jacobian is given by

Af ¼
A

f
11 A

f
12

A
f
21 A

f
22

" #
¼

@fI

@I

@fI

@f
@ff

@I

@ff

@f

2
664

3
775; Ag ¼

A
g
11 A

g
12

A
g
21 A

g
22

" #
¼

@gI

@I

@gI

@f
@gf

@I

@gf

@f

2
664

3
775: ð32Þ

Calculations using the preceding lemmas yield the formulae for each element of the above
matrices Af and Ag: The Furstenberg–Khasminskii formula for the top Lyapunov exponent is
derived in the next section.
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5. Scaling and projection

Following the notation of the preceding section we shall now consider the stochastic system in
action-angle variables given by Eqs. (30) and (31). Our aim is to obtain an asymptotic expansion
of the top Lyapunov exponent of the random dynamical system described by Eqs. (30) and (31).
For this purpose we have to study its linearization. Let us denote the linearized variables by
ðX ;Y Þ and keeping track of the notation introduced in the preceding section, we have

dXt

dYt

" #
¼

0 0

o0ðItÞ 0

" #
Xt

Yt

" #
dt þ eAf ðft; ItÞ

Xt

Yt

" #
dt þ

ffiffiffiffiffi
2e

p
Agðft; ItÞ

Xt

Yt

" #
3 dWt: ð33Þ

Because of the special structure of the zeroth order terms in Eqs. (30) and (31), the linear
variational equations (33) naturally exhibit a nilpotent structure. In order to obtain a formula for
the top Lyapunov exponent, one needs H .ormander’s condition for hypoellipticity of the
associated generator. H .ormander’s condition can be replaced by a sufficient condition in a co-
ordinate-free form, particularly when the deterministic matrix is nilpotent.

Let A represent the matrix corresponding to the stochastic terms. Then for a d 	 d nilpotent
matrix N and its one-dimensional kernel vAker N; the sufficient condition for hypoellipticity is
given by

rankfðad
j
NAÞv : j ¼ 1; 2;y; n � 1g ¼ d; ð34Þ

where we define ad0
NA ¼ A; ad1

NA ¼ ½N;A� ¼ AN � NA; ad
j
NA ¼ ½N; ad

j�1
N � for j ¼ 1; 2; 3;y . It

can be easily shown [14] that the matrix element A1da0 implies Eq. (34). This in turn implies that
for our situation the stationary density exists and is smooth if A

g
12a0: This nilpotent form and the

term ðAg
12Þ are responsible for the main results on the asymptotic expansion of its top Lyapunov

exponent to be developed in this and the following sections.

5.1. Pinsky–Wihstutz scaling

In the previous section, it is shown that a smooth stationary density exists, however in order to
calculate this we need to make use of the small parameter e that naturally exists in our problem. In
terms of polar co-ordinates y ¼ tan�1ðY=X Þ and r ¼ log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2

p
; the angular component

yt; tAR; of process (33) reads

dyt ¼ f #hy
0ðft; It; ytÞ þ e #hy2ðft; It; ytÞgdt þ

ffiffi
e

p
#hy
1ðft; It; ytÞ3 dWt ð35Þ

with the generator

Le ¼ L0 þ eL1; L0 ¼ hy
0ðf; I ; yÞ

@

@y
; L1 ¼ hy

2ðf; I ; yÞ
@

@y
þ

1

2
hy
1ðf; I ; yÞ

@

@f

 �2

; ð36Þ

where for IX0; fA½�p;p�; yA½0;p� we have

hy
0ðf; I ; yÞ ¼ o0ðIÞ cos2 y;

hy
2ðf; I ; yÞ ¼ A

f
21ðf; IÞ cos

2 yþ ðAg
22 � A

g
11Þðf; IÞ cos y sin y� A

f
12ðf; IÞ sin

2 y;

hy
1ðf; I ; yÞ ¼ A

g
21ðf; IÞ cos

2 yþ ðAg
22 � A

g
11Þðf; IÞ cos y sin y� A

g
12ðf; IÞ sin

2 y:
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In the perturbative form of problem (35), the generator L0 associated with the nilpotent part
vanishes for some yc ¼ 7p=2; which is of the order 2 and the measure m0 of Ln

0m0 ¼ 0 will not
have a smooth density, but rather Darac measures at p=2; i.e., m0 ¼ d7p=2: Therefore, we must
smooth the measure by applying a suitable scaling as pointed out by Pinsky and Wihstutz [14]. Let
us elaborate on this point.

Since the invariant measure of the angular part of the linearization (nilpotent) trivializes in one
direction, we appeal to the results of Pinsky and Wihstutz [14]. Pinsky–Wihstutz scaling stretches
the co-ordinates in such a way that the leading order diffusion part balances the leading order
drift term. This allows us to replace the generalized measure m0 ¼ 0 by a smooth measure.
Accordingly, the variables ðX ;Y Þ are rescaled with a certain fractional power of e; i.e.,

X ¼ e1=3U ; Y ¼ V ;

in order to see the correct asymptotics. In the rescaled variables we obtain the equation

dUt

dVt

" #
¼

eAf
11ðft; ItÞ e2=3A

f
12ðft; ItÞ

e1=3o0 þ e4=3A
f
21ðft; ItÞ eAf

22ðft; ItÞ

" #
Ut

Vt

" #
dt

þ
ffiffiffi
2

p e1=2A
g
11ðft; ItÞ e1=6A

g
12ðft; ItÞ

e5=6o0ðItÞ þ e1=2A
g
21ðft; ItÞ eAg

22ðft; ItÞ

" #
Ut

Vt

" #
3 dWt:

5.2. Furstenberg–Khasminskii formula

We next apply the Khasminskii transformation so that the above linear equation is decomposed
into radial and angular part. This provides the most convenient setting for the description
of the top Lyapunov exponent by means of the so-called Furstenberg–Khasminskii formula.
Write

U ¼ r cos y; V ¼ r sin y:

Then the angular component described by the process yt; tAR; satisfies the stochastic differential
equation

d yt ¼ hy
0ðft; It; ytÞ dt þ hy

1ðft; It; ytÞ3 dWt; ð37Þ

where for IX0; fA½�p;p�; yA½0;p� we have

hy
0ðf; I ; yÞ ¼ e1=3o0ðIÞ cos2 y� e2=3A

f
12ðf; IÞ sin

2 y

þ eðAf
22 � A

f
11Þðf; IÞ sin y cos yþ e4=3A

f
21ðf; IÞ cos

2 y;

hy
1ðf; I ; yÞ ¼

ffiffiffi
2

p
½�e1=6A

g
12ðf; IÞ sin

2 y

þ e1=2ðAg
22 � A

g
11Þðf; IÞ sin y cos yþ e5=6 A

g
21ðf; IÞ cos

2 y�:

For the rest of this section we shall be concerned with a calculation of the scaled decomposition of
the infinitesimal generator of our three-dimensional system given by Eqs. (30), (31) and (35) as
well as the functional of the radial part appearing in the representation of Lyapunov exponents in
formulae of the Furstenberg–Khasminskii type.
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Appropriately adding the drift and the diffusion parts (see Appendix A for details), finally
yields the infinitesimal generator Le of our system (30), (31) and (35) as

Le ¼ L0 þ e1=3L1 þ e2=3L2 þ eL3 þ e4=3L4 þ e5=3L5; ð38Þ

where

L0 ¼o
@

@f
;

L1 ¼ � o0 u2 @

@u
þ ðAg

12Þ
2 @2

@u2
;

L2 ¼ ½ðAf
12 þ gI A

g
121 þ gfA

g
122Þ�

@

@u
� ½2A

g
12ðA

g
22 � A

g
11Þ� u1=2 @

@u
u1=2 @

@u

 �

þ ½2gI A
g
12�

@2

@I@u
þ ½2gfA

g
12�

@2

@f@u
;

L3 ¼ ½fI þ gI A
g
11 þ gf A

g
12�

@

@I
þ ½ff þ gI A

g
21 þ gfA

g
22�

@

@f

þ g2
I

@2

@I2
þ g2

f
@2

@f2
þ 2gI gf

@2

@I@f

� ½Af
22 � A

f
11 þ gI ðA

g
221 � A

g
111Þ þ gfðA

g
222 � A

g
112Þ� u

@

@u

þ ½ðAg
22 � A

g
11Þ

2 � 2A
g
12A

g
21�u

@

@u
ðu

@

@u
Þ

� ½2gI ðA
g
22 � A

g
11Þ�u

@2

@I@u
� ½2gfðA

g
22 � A

g
11Þ�u

@2

@f@u
;

L4 ¼ � ½ðAf
21 þ gI A

g
211 þ gfA

g
212Þ�u

2 @

@u

þ ½2A
g
21ðA

g
22 � A

g
11Þ�u

3=2 @

@u
u3=2 @

@u

 �

� ½2gI A
g
21�u

2 @2

@I@u
� ½2gfA

g
21�u

2 @2

@f@u
;

L5 ¼ðAg
21Þ

2u2 @

@u
u2 @

@u

 �
: ð39Þ

Here and in the sequel we prefer to work with the stereographic projection variable

u ¼ cot y; yA½0; p�;

for simplicity of presentation.
To represent Lyapunov exponents, we shall make use of a formula of Furstenberg and

Khasminskii. In this formula, the following functional of the radial part of the linearization has to
be integrated with the invariant measure of our system. Due to the regularity properties of our
vector fields, we know that there exists an invariant density pe: In this case, the formula of
Furstenberg–Khasminskii states that the leading Lyapunov exponent le given by Eq. (9) of our
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system satisfies

le ¼
Z
½�p;p�	Rþ	R

Qeðf; I ; uÞpeðf; I ; uÞ df dI du:

As for the infinitesimal generator, our asymptotic analysis requires that we decompose Qe into
fractional powers of e1=3: Similar calculations (see Appendix A for details) as for the generator
yield

Qe ¼ e1=3Q1 þ e2=3Q2 þ eQ3 þ e4=3Q4 þ e5=3Q5; ð40Þ

where

Q1ð:; uÞ ¼o0 u

1þ u2
� ðAg

12Þ
2 u2 � 1

ð1þ u2Þ2
;

Q2ð:; uÞ ¼ ½Af
12 þ gI A

g
121 þ gfA

g
122�

u

1þ u2
þ A

g
12ðA

g
22 � A

g
11Þ

uðu2 � 3Þ

ð1þ u2Þ2
;

Q3ð:; uÞ ¼ ½Af
11 þ gI A

g
111 þ gfA

g
112�

u2

1þ u2
þ ½Af

22 þ gI A
g
221 þ gfA

g
222�

1

1þ u2

þ ðAg
22 � A

g
11Þ

2 2u2

ð1þ u2Þ2
þ A

g
12A

g
21

ðu2 � 1Þ2

ð1þ u2Þ2
;

Q4ð:; uÞ ¼ ½Af
21 þ gI A

g
211 þ gfA

g
212�

u

1þ u2
þ A

g
21ðA

g
22 � A

g
11Þ

uð3u2 � 1Þ

ð1þ u2Þ2

Q5ð:; uÞ ¼ ðAg
21Þ

2 u2ðu2 � 1Þ

ð1þ u2Þ2
: ð41Þ

6. Asymptotic expansion

We construct a formal expansion of the invariant measure, i.e.,

pE ¼ p0 þ e1=3p1 þ e2=3p2 þ?þ EN=3pN þ? :

Substituting this expansion and the expansion for LE into the Fokker–Planck equation yields the
following sequence of Poisson equations to be solved for p0; p1; p2;y:

Ln

0p0 ¼ 0;

Ln

0p1 ¼ �Ln

1p0;

Ln

0p2 ¼ �Ln

1p1 � Ln

2p0;

Ln

0p3 ¼ �Ln

1p2 � Ln

2p1 � Ln

3p0;

^

This yields the following expression for the maximal Lyapunov exponent:

lE ¼ e1=3/Q1; p0Sþ e2=3½/Q2; p0Sþ/Q1; p1S� þ? :
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As in Ref. [5], a proof that this expansion is, in fact, asymptotic begins with the construction of the
adjoint problem

Lefe ¼ Qe � Le; ð42Þ

with Qe;Le as defined above and

f e ¼ f0 þ e1=3f1 þ e2=3f2 þ ef3 þ?þ EN=3fN ;

Le ¼ L0 þ e02=3L1 þ e2=3L2 þ eL3 þ?þ EN=3LN :

Contrary to the usual form, we allow Le;Li; iX0 to be functions of I alone. By using our
formulae for Li and Qi and identifying terms in the corresponding expansion following from
Eq. (42) then produces a set of Poisson-type equations. Hence, Li’s are chosen so that the
sequence of equations

L0f0 ¼ �L0;

L0f1 ¼ Q1 � L1 � L1f0;

L0f2 ¼ Q2 � L2 � L1f1 � L2f0;

^

L0fN ¼ �LN �
Xi¼5

i¼1

LifN�i ð43Þ

are solvable. Next, we define the truncated density *pE ¼ p0 þ e1=3p1 þ e2=3p2 þ?þ EN=3pN and
assume nðIÞ as I-marginal of both pE and *pE: Then, the error /QE; pES�/QE; *pES introduced by
truncating lE at an arbitrary order NX0 can be evaluated as in Ref. [5]. Suppose that the
functions p0; p1;y; pN and f0; f1;y; fN are constructed such that all inner products in the
expressions for the error are well defined and bounded, then it can be shown as in Ref. [5] that the
expansion for a fixed NX0 is a valid asymptotic expansion. In the subsequent section, we
compute the leading term

l1 ¼ /Q1; p0S ð44Þ

along with the estimate of the remainder term in the asymptotic expansion of the top Lyapunov
exponent.

7. Calculation of the first term k1

In this section we shall compute the leading terms in the asymptotic expansion of the top
Lyapunov exponent of our system, based on its representation in the Furstenberg–Khasminskii
formula. The invariant density of our three dimensional system is the unique lift of the density nðIÞ
of the I-motion. The density nðIÞ is given as the solution of the adjoint equation

�
d

dI
½ðfI þ gI A

g
11 þ gfA

g
12Þn� þ

d2

dI2
½g2

In� ¼ 0; ð45Þ
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where for convenience the average of functions k over fA½�p;p� is denoted by %k: We can easily
calculate nðIÞ for the three cases we are mostly interested in, i.e., s ¼ const or sðx; yÞ ¼ x or y; for
x; yAR:

Lemma 7.1. Let cX0 be given such that

c1 ¼
Z

N

0

exp �
Z I

c

oðJÞ
y2ðJÞ

y2s2ðJÞ
þ

yssyðJÞ

y2s2ðJÞ

" #
dJ

 !
dIoN:

Then

nðIÞ ¼ c1 exp �
Z I

c

oðJÞ
y2ðJÞ

y2s2ðJÞ
þ

yssyðJÞ

y2s2ðJÞ

" #
dJ

 !
; ð46Þ

gives the marginal density in I of pe: In particular, if s ¼ constant (i.e., additive noise), we have

nðIÞ ¼ c1 exp �
hðIÞ
s2

	 

; IX0; ð47Þ

Proof. Eq. (45) may be written equivalently, with some constant cAR:

ðfI � gI A
g
11 þ gfA

g
12Þ nþ c ¼ g2

I

d

dI
n:

Now, an easy calculation gives the formulae

A
g
11 ¼

sþ ysy

o
@y

@I
þ

ysx

o
@x

@I
� ys

o0

o2
;

A
g
12 ¼

y2sx � ðsþ ysyÞU 0ðxÞ
o2

:

Use these and periodicity to derive

gfA
g
12 ¼ �gI A

g
22 ¼ gI A

g
11 � gIsy:

Hence the homogeneous part of the equation determining n is given by

n0ðIÞ ¼ c1 exp �
Z I

c

oðJÞ
y2ðJÞ

y2s2ðJÞ
þ

yssyðJÞ

y2s2ðJÞ

" #
dJ

 !
;

with an arbitrary constant c1: We may assume that c�1
1 ¼

R
N

0 n0ðIÞ dIoN and choose c ¼ 0 and
get the desired formula. &

Since for the convergence of our algorithm the condition

ðFÞ o0ðIÞ > 0 for a:e: IX0

is important, we shall make this general assumption throughout this paper.
For reasons which will become clear, in the computation of the leading term in the asymptotic

expansion of the top Lyapunov exponent, we shall solve for a density p0ðI ; yÞ which satisfies both
Ln

0p0 ¼ 0; the zeroth order term in the expansion of the Fokker–Planck equation, and L1
n
p0 ¼ 0;
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the solvability of the first order term in the expansion, i.e.,

Ln

0p1 ¼ �Ln

1p0:

Proposition 7.1. For I ; sX0 let aðIÞ ¼ ðAg
12Þ

2ðIÞ; mðI ; sÞ ¼ ð3aðIÞs
2o0ðIÞÞ

1=3 and let nðm;s2ÞðuÞ denote the
Gaussian density with mean m; variance s2; evaluated at uAR; and

qgðsÞ ¼ GðgÞ�1sg�1 expð�sÞ; sX0;

the density of a Gamma law with parameter g > 0: Let, for IX0; uAR

p0ðI ; uÞ ¼
Z

N

0

n mðI ; sÞ;
1

4ðo0ðIÞ=aðIÞÞmðI ; sÞ

 �
ðuÞ q1=6ðsÞ ds: ð48Þ

Then we have

Ln

0p0 ¼ 0; L1
n
p0 ¼ 0:

Proof. Since p0 is just a function of I ; u; the first equation is obvious. To derive the second, note
first that

L1 ¼ �o0u2 @

@u
þ a

@2

@u2
:

We fix IX0 and have to solve for p0ðI ; :Þ satisfying

o0ðIÞu2p0ðI ; :Þ þ aðIÞ
d

du
p0ðI ; :Þ ¼ cðIÞ

for a constant cðIÞ which is determined by the normalization condition for p0ðI ; :Þ: Denote a ¼
o0ðIÞ=3aðIÞ: The obvious solution of the above differential equation given by

p0ðI ; uÞ ¼ cðIÞ expð�au3Þ
Z u

�N

expðav3Þ dv

has to be described in an alternative form. For this purpose we may write, setting v ¼ u � h with
hX0;

�aðu3 � v3Þ ¼ �3ah u �
h

2

� �2
�
1

4
ah3:

Using this in the integral representation, and changing variables once again, setting s ¼ 1
4
ah3; we

obtain the alternative expression

p0ðI ; uÞ ¼ cðIÞ
1

3

4

a

 �1=3Z N

0

exp �3a
4s

a

 �1=3

u � 1
2

4s

a

 �1=3
" #20

@
1
A expð�sÞs�2=3 ds:

Now observe that the renormalization of the quadratic exp-factor in terms of a Gaussian density
will produce an s�1=6; so that the Gaussian densities with mean 1

2 ð4s=aÞ1=3 ¼ mðI ; sÞ and variance
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1=½6að4s=aÞ1=3� ¼ 1=½4ðo0=aÞmðI ; sÞ� have to be averaged by a probability measure with density
C � s�5=6 expð�sÞ; i.e., the density of a Gð1=6Þ law. This completes the proof. &

We now start our asymptotic analysis with the Ansatz of adjoint expansion (42). In order to
obtain the first term in the asymptotic expansion of the top Lyapunov exponent, the first three of
Eq. (43) have to be analyzed carefully in the sequel. They are given by

L0f0 ¼ �L0; ð49Þ

L0f1 þ L1f0 ¼ Q1 � L1; ð50Þ

L0f2 þ L1f1 þ L2f0 ¼ Q2 � L2: ð51Þ

We first obtainZ
L0p0 dðf; I ; uÞ ¼ �

Z
L0f0p0 dðf; I ; uÞ ¼

Z
f0Ln

0p0 dðf; I ; uÞ ¼ 0; ð52Þ

since Ln
0p0 ¼ 0: This expresses the fact that the zeroth term l0 in the development of le vanishes.

Moreover, we have

L0f0 ¼ o
@

@f
f0 ¼ �L0;

hence, for IX0; fA½�p;p�; uAR;

f0ðf; I ; uÞ ¼ �L0ðIÞfþ gðI ; uÞ:

But by periodicity in f; this in turn implies that

L0 ¼ 0: ð53Þ

Hence f0 is just a function of I and u: Let us next use this knowledge to analyze Eq. (50). Since
Ln

0p0 ¼ 0 ¼ L1
n
p0 we get

0 ¼ �
Z

f1 Ln

0p0 dðf; I ; uÞ ¼
Z

L0f1p0 dðf; I ; uÞ

¼
Z

½Q1 � L1 � L1f0�p0 dðf; I ; uÞ

¼
Z

½Q1 � L1�p0 dðf; I ; uÞ �
Z

f0L1
n
p0 dðI ; uÞ

¼
Z

½Q1 � L1�p0 dðf; I ; uÞ: ð54Þ

Eq. (54) gives us the leading term in the development of the top Lyapunov exponent of our
system. It can also be interpreted as the solvability condition for Eq. (50).

Theorem 7.1. We have

l1 ¼
3

2

 �1=3 Gð1
2
Þ

Gð1
6
Þ

Z
N

0

o0ðIÞ2=3aðIÞ1=3nðIÞ dI : ð55Þ

In particular, l1 > 0:
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Proof. We solve the averaged form of Eq. (54) for L1 and use the equality L1
n
p0 ¼ 0 to write for

every IX0:

L1ðIÞ ¼
Z
R

ðQ1 � L1f0ÞðI ; uÞ p0ðI ; uÞ du

¼
Z
R

Q1ðI ; uÞ p0ðI ; uÞ du: ð56Þ

We next split off Q1 one part which lies in the range of L1: This is done in the following way.
Setting

f ðuÞ ¼ �1
2 lnð1þ u2Þ;

we calculate

f 0ðuÞ ¼ �
u

1þ u2
; f 00ðuÞ ¼

u2 � 1

ð1þ u2Þ2

and therefore

L1f ð:; uÞ ¼ o0u
u2

1þ u2
þ ðAg

12Þ
2 u2 � 1

ð1þ u2Þ2

which by the formula given for Q1 leads to

ðL1f þ Q1Þð:; uÞ ¼ ðL1f þ Q1Þð:; uÞ ¼ o0u:

Hence we obtain, with another appeal to the equation L1
n
p0 ¼ 0 and Proposition 7.1,

L1ðIÞ ¼o0ðIÞ
Z
R

up0ðI ; uÞ du

¼o0ðIÞ
Z

N

0

mðs; IÞ q1=6ðsÞ ds

¼
3

2

 �1=3

o0ðIÞ2=3 aðIÞ1=3
Z

N

0

s1=3q1=6ðsÞ ds

¼
3

2

 �1=3 Gð1
2
Þ

Gð1
6
Þ
o0ðIÞ2=3aðIÞ1=3: ð57Þ

It remains to integrate L1 with the density n to obtain the formula claimed. &

The difficult part of these calculations is to show that the expansion is, in fact, asymptotic, so
that the computational algorithm that is developed here is indeed convergent. For this, we need
the estimation of the remainder terms in our asymptotic expansion, i.e., we need some more
information on f ’s. The proof that such an algorithm of computation is convergent will be
presented in Ref. [19].
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8. Conclusions

In this paper we extend the work by Arnold and Imkeller [12] on the Kramers oscillator. To this
end, we made use of the classical results on action-angle variables [13], and more recent results on
Lyapunov exponents by Arnold et al. [4], Pinsky and Wihstutz [14], Sri Namachchivaya and Van
Roessel [5] and Imkeller and Lederer [15]. An asymptotic expansion for the maximal Lyapunov
exponent, the exponential growth rate, of the response of single-well Kramers oscillator driven by
either an additive or multiplicative white-noise process was constructed. However, only the first
term of the asymptotic expansion was analytically evaluated. Based on this, it was shown that the
top Lyapunov exponent is positive, and for small values of noise intensity

ffiffi
e

p
and dissipation e the

exponent grows proportionally to e1=3: A similar result is proved by Baxendale and Goukasian
[20] for the multiplicative case, where calculations for the linearized process are done with respect
to a moving frame. The idea behind such a moving frame is to use instead of the co-ordinates
which remains parallel to ðx; yÞ; a new co-ordinate system ðu; vÞ with one axis u moving so as to
remains tangent to the unperturbed trajectory, while the other axis v remain perpendicular to the
unperturbed trajectory, which in the dynamical systems literature is known as Diliberto [21]
transformations. We only presented the main results and the proofs of the main theorem. The fact
that such an algorithm of computation is convergent is presented in Ref. [19].

In closing, it seems appropriate to make the following remarks regarding the implications of the
positive top Lyapunov exponent of the stationary measure for the Kramers oscillator. Since the
corresponding Markov process ðxt; ’xtÞ generated by Eq. (2) (so-called one-point motion of the
Kramers oscillator) is positive recurrent, the stationary measure can be viewed as the occupation
measure, i.e., the proportion of time spent by a typical solution of Eq. (2) in the volume element
dx dy: The top Lyapunov exponents which deal with stability on the other hand, are determined
by the behavior of two neighboring orbits or the two-point motion of the Kramers oscillator. In
this context, the positivity of the top Lyapunov exponent has remarkable implications. While for
each initial condition the solution trajectory asymptotically approaches the volume element in the
state space giving rise to a non-trivial stationary measure, the distance between any two initial
conditions will grow at an exponentially fast rate. Furthermore, the growth of two-dimensional
volume under the solution flow is determined by the sum of the two Lyapunov exponents which is
�e and thus negative. Hence, as t goes to N the original two-dimensional volume under the
solution flow will shrink, but will be continuously stretched in one direction (and folded in a
complicated manner).

In addition, a positive Lapunov exponent is also an indication of the fact that via Pesin’s
entropy formula, the system under the stationary measure has positive entropy.
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Appendix A. Calculation of Le and Qe

The infinitesimal generator Le of our system (30), (31) and (35) is given by

Le ¼ hI
0

@

@I
þ h

f
0

@

@f
þ hy

0

@

@y
þ

1

2
hI
1

@

@I
þ h

f
1

@

@f
þ hy

1

@

@y

 �2

¼ hI
0 þ

1

2
hI
1

@hI
1

@I
þ h

f
1

@hI
1

@f
þ hy

1

@hI
1

@y

 �� �
@

@I

þ h
f
0 þ

1

2
hI
1

@h
f
1

@I
þ h

f
1

@h
f
1

@f
þ hy1

@h
f
1

@y

 !" #
@

@f

þ hy
0 þ

1

2
hI
1

@hy
1

@I
þ h

f
1

@hy
1

@f
þ hy1

@hy1
@y

 �� �
@

@y

þ
1

2
ðhI

1Þ
2 @2

@I2
þ

1

2
ðhf1 Þ

2 @2

@f2
þ

1

2
ðhy1Þ

2 @2

@y2

þ hI
1h

f
1

@2

@I@f
þ hI

1hy
1

@2

@I@y
þ h

f
1 hy1

@2

@f@y
: ðA:1Þ

We shall now collect the main steps in the evaluation of Le; starting with the drift part. Ordering
according to powers of e1=3; the contributions to the drift part of Eq. (A.1) yield the formula

hI
0 þ

1

2
hI
1

@hI
1

@I
þ h

f
1

@hI
1

@f
þ hy

1

@hI
1

@y

 �� �
ð:; yÞ

@

@I

þ h
f
0 þ

1

2
hI
1

@h
f
1

@I
þ h

f
1

@h
f
1

@f
þ hy

1

@h
f
1

@y

 !" #
ð:; yÞ

@

@f

þ hy0 þ
1

2
hI
1

@hy1
@I

þ h
f
1

@hy1
@f

þ hy
1

@hy
1

@y

 �� �
ð:; yÞ

@

@y

¼ o
@

@f
þ e1=3 ½o0 cos2 yþ 2ðAg

12Þ
2 sin3 y cos y�

@

@y

� �

� e2=3 ½ðAf
12 þ gI A

g
121 þ gfA

g
122Þ sin

2 yþ A
g
12ðA

g
22 � A

g
11Þð3 sin2 y cos2 y� sin4 yÞ�

@

@y

� �

þ e ½fI þ gI A
g
11 þ gfA

g
12�

@

@I
þ ½ff þ gI A

g
21 þ gfA

g
22�

@

@f

�
þ ½ðAf

22 � A
f
11 þ gI ðA

g
221 � A

g
111Þ þ gfðA

g
222 � A

g
112ÞÞ sin y cos y

þ ððAg
22 � A

g
11Þ

2 � 2A
g
12A

g
21Þðsin y cos3y� sin3y cos yÞ�

@

@y

�

þ e4=3 ½ðAf
21 þ gI A

g
211 þ gfA

g
212Þ cos

2 yþ A
g
21ðA

g
22 � A

g
11Þðcos

4 y� 3 sin2y cos2y�
@

@y

� �

� e5=3 ½2ðAg
21Þ

2 sin y cos3 y�
@

@y

� �
: ðA:2Þ
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After some tedious calculations, we obtain the following formula for the diffusion part of the
infinitesimal generator (A.1):

1

2
ðhI

1Þ
2 @2

@I2
þ

1

2
ðhf

1 Þ
2 @2

@f2
þ

1

2
ðhy1Þ

2 @2

@y2

þ hI
1h

f
1

@2

@I@f
þ hI

1hy1
@2

@I@y
þ h

f
1 hy

1

@2

@f@y

¼ e1=3 ½ðAg
12Þ

2 sin4 y�
@2

@y2

� �
� e2=3½2A

g
12ðA

g
22 � A

g
11Þ sin

3 y cos y�
@2

@y2

þ ½2gI A
g
12 sin

2 y�
@2

@I@y
þ ½2gfA

g
12 sin

2 y�
@2

@f@y
�

þ e g2
I

@2

@I2
þ g2

f
@2

@f2
þ ½ððAg

22 � A
g
11Þ

2 � 2A
g
12A

g
21Þ sin

2 y cos2 y�
@2

@y2

�

þ 2gI gf
@2

@I@f
þ ½2gI ðA

g
22 � A

g
11Þ sin y cos y�

@2

@I@y

þ ½2gfðA
g
22 � A

g
11Þ sin y cos y�

@2

@f@y

�

þ e4=3½2A
g
21ðA

g
22 � A

g
11Þ sinycos

3y�
@2

@y2

þ ½2gI A
g
21 cos

2 y�
@2

@I@y
þ ½2gfA

g
21 cos

2 y�
@2

@f@y
�

þ e5=3 ½ðAg
21Þ

2 cos4 y�
@2

@y2

� �
: ðA:3Þ

Adding the drift and the diffusion parts finally yields the following decomposition of the
infinitesimal generator:

Le ¼ L0 þ e1=3L1 þ e2=3L2 þ eL3 þ e4=3L4 þ e5=3L5;

where

L0 ¼o
@

@f
;

L1 ¼ ½o0 cos2 yþ 2ðAg
12Þ

2 sin3 y cos y�
@

@y
þ ½ðAg

12Þ
2 sin4 y�

@2

@y2
;
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L2 ¼ � ½ðAf
12 þ gI A

g
121 þ gfA

g
122Þ sin

2 y

þ A
g
12ðA

g
22 � A

g
11Þð3 sin2 y cos2 y� sin4 yÞ�

@

@y

� ½2A
g
12ðA

g
22 � A

g
11Þ sin

3y cos y�
@2

@y2

� ½2gI A
g
12 sin

2 y�
@2

@I@y
� ½2gfA

g
12 sin

2 y�
@2

@f@y
;

L3 ¼ ½fI þ gI A
g
11 þ gfA

g
12�

@

@I

þ ½ff þ gI A
g
21 þ gfA

g
22�

@

@f

þ ½ðAf
22 � A

f
11 þ gI ðA

g
221 � A

g
111Þ þ gfðA

g
222 � A

g
112ÞÞ sin y cos y

þ ððAg
22 � A

g
11Þ

2 � 2A
g
12A

g
21Þðsin ycos3y� sin3y cos yÞ�

@

@y

þ g2
I

@2

@I2
þ g2

f
@2

@f2
þ ½ððAg

22 � A
g
11Þ

2 � 2A
g
12A

g
21Þ sin

2 y cos2 y�
@2

@y2

þ 2gI gf
@2

@I@f
þ ½2gI ðA

g
22 � A

g
11Þ sin y cos y�

@2

@I@y

þ ½2gfðA
g
22 � A

g
11Þ sin y cos y�

@2

@f@y
;

L4 ¼ ½Af
21 þ gI A

g
211 þ gfA

g
212Þ cos

2 y

þ A
g
21ðA

g
22 � A

g
11Þðcos

4 y� 3 sin2 y cos2 yÞ�
@

@y

þ ½2A
g
21ðA

g
22 � A

g
11Þ sin y cos3 y�

@2

@y2

þ ½2gI A
g
21 cos

2 y�
@2

@I@y
þ ½2gfA

g
21 cos

2 y�
@2

@f@y
;

L5 ¼ ½2ðAg
21Þ

2 sin y cos3 y�
@

@y
þ ½ðAg

21Þ
2 cos4 y�

@2

@y2
:

As explained in Section 2, to evaluate the top Lyapunov exponent, we shall make use of formula
(9) of Furstenberg–Khasminskii which requires the calculation of

Qe ¼ q0 þ
1

2
hI
1

@q1

@I
þ h

f
1

@q1

@f
þ hy1

@q1

@y

� �
;

which decomposes into fractional powers of e1=3 as

Qe ¼ e1=3Q1 þ e2=3Q2 þ eQ3 þ e4=3Q4 þ e5=3Q5;
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where

Q1ð:; yÞ ¼o0 sin y cos y� ðAg
12Þ

2 sin2 yðcos2 y� sin2 yÞ;

Q2ð:; yÞ ¼A
f
12 sin y cos yþ A

g
12ðA

g
22 � A

g
11Þ sin y cos yðcos2 y� 3 sin2 yÞ

þ ðgI A
g
121 þ gfA

g
122Þ sin y cos y;

Q3ð:; yÞ ¼A
f
11 cos

2 yþ A
f
22 sin

2 yþ ðAg
22 � A

g
11Þ

2 2 sin2 y cos2 y

þ A
g
12A

g
21ðcos

2 y� sin2 yÞ2 þ ðgI A
g
111 þ gfA

g
112Þ cos

2 y

þ ðgI A
g
221 þ gfA

g
222Þ sin

2 y;

Q4ð:; yÞ ¼A
f
21 sin y cos yþ A

g
21ðA

g
22 � A

g
11Þ sin y cos yð3 cos2 y� sin2 yÞ

þ ðgI A
g
211 þ gfA

g
212Þ sin y cos y;

Q5ð:; yÞ ¼ ðAg
21Þ

2 cos2 yðcos2 y� sin2 yÞ:

Making use of the stereographic projection

u ¼ cot y; yA½0; p�

for simplicity, the infinitesimal generator Le and Qe are expressed in Eqs. (38) and (40).
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